Administration of brain-derived neurotrophic factor suppresses the expression of heat shock protein 27 in rat retinal ganglion cells following axotomy.

نویسندگان

  • A M R Krueger-Naug
  • J G Emsley
  • T L Myers
  • R W Currie
  • D B Clarke
چکیده

Optic nerve transection results in the apoptotic cell death of the majority of retinal ganglion cells by 14 days. The neurotrophin brain-derived neurotrophic factor (BDNF) enhances survival of retinal ganglion cells. In addition, the small heat shock protein Hsp27, with its anti-apoptotic effects, may be important for neuron survival following axotomy or trophic factor withdrawal. We recently reported the induction and expression of Hsp27 in a subset of retinal ganglion cells following axotomy. Here we have examined the effect of BDNF administration on the expression of Hsp27 in axotomized adult rodent retinal ganglion cells. Retinal ganglion cells were pre-labeled with Fluorogold prior to optic nerve transection and concomitant intraocular injection of BDNF or vehicle. Hsp27 immunofluorescence was examined in retinal sections from 4 to 28 days following injury. Consistent with previous survival studies, the number of Fluorogold-labeled retinal ganglion cells declined from 100% at 4 days to approximately 15% by 14 days following axotomy and vehicle injection. In contrast, with BDNF administration, retinal ganglion cell survival was maintained at 100% to 7 days following axotomy. We report that the number of Hsp27-positive injured retinal ganglion cells, as detected by immunohistochemical staining, was decreased by 50% in BDNF-treated retinas, when compared with vehicle-treated controls. This decreased expression of Hsp27 in response to BDNF treatment was seen both at early (4 days) and delayed (14 days) times. BDNF following optic nerve transection significantly reduced the expression of Hsp27 in retinal ganglion cells. These results indicate that BDNF may down-regulate alternate cell survival pathways, including the stress-induced expression of Hsp27, and may help to explain the failure of chronic neurotrophin treatment to maintain long-term retinal ganglion cell survival.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brain derived neurotrophic factor maintains Brn3a expression in axotomized rat retinal ganglion cells.

The transcription factor Brn3a has been reported to be a good marker for adult rat retinal ganglion cells in control and injured retinas. However, it is still unclear if Brn3a expression declines progressively by the injury itself or otherwise its expression is maintained in retinal ganglion cells that, though being injured, are still alive, as might occur when assessing neuroprotective therapi...

متن کامل

Neural Stem Cell-based Intraocular Administration of Pigment Epithelium-derived Factor Promotes Retinal Ganglion Cell Survival and Axon Regeneration after Optic Nerve Crush Injury in Rat: An Experimental Study

Background: Pigment epithelium-derived factor (PEDF) is regarded as a multifunctional protein possessing neurotrophic and neuroprotective properties. PEDF has a very short half-life, and it would require multiple injections to maintain a therapeutically relevant level without a delivery system. However, multiple injections are prone to cause local damage or infection. To overcome this, we chose...

متن کامل

Differential Effects of Resveratrol on the Expression of Brain-Derived Neurotrophic Factor Transcripts and Protein in the Hippocampus of Rat Brain

Background: The induction of brain-derived neurotrophic factor (BDNF) expression in the hippocampus has shown to play a role in the beneficial effects of resveratrol (RSV) on the learning and memory. The BDNF gene has a complicated structure with eight 5’ noncoding exons (I-IXa), each of which can splice to a common coding exon (IX) to form a functional transcript. Estrogens increase levels of ...

متن کامل

Brain-derived neurotrophic factor prevents axotomized retinal ganglion cell death through MAPK and PI3K signaling pathways.

PURPOSE Brain-derived neurotrophic factor (BDNF) has a potential neuroprotective effect on axotomized retinal ganglion cells (RGCs); however, the mechanism, in regard to intracellular signaling, of BDNF-induced neuroprotection of RGCs is largely unknown. Intracellular signaling was investigated, by using axotomized RGCs and the relative contribution of the two major downstream signaling routes ...

متن کامل

Prolonged delivery of brain-derived neurotrophic factor by adenovirus-infected Müller cells temporarily rescues injured retinal ganglion cells.

In this study, we demonstrate that: (i) injection of an adenovirus (Ad) vector containing the brain-derived neurotrophic factor (BDNF) gene (Ad.BDNF) into the vitreous chamber of adult rats results in selective transgene expression by Müller cells; (ii) in vitro, Müller cells infected with Ad.BDNF secrete BDNF that enhances neuronal survival; (iii) in vivo, Ad-mediated expression of functional ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuroscience

دوره 116 1  شماره 

صفحات  -

تاریخ انتشار 2003